Math 246C Lecture 7 Notes

Daniel Raban

April 15, 2019

1 Maximal Analytic Continuation and Analytic Functionals

1.1 Maximal analytic continuation

Let X, Y be Riemann surfaces, and let $p : Y \to X$ be holomorphic with no ramification points. Then p is a local biolomorphism, and the pullback map $p^* : O_{X,p(y)} \to O_y$ sending $f \mapsto f \circ p$ is an isomorphism with inverse p_* . Let $\varphi \in O_{X,a}$ for some $a \in X$.

Definition 1.1. An analytic continuation of φ is given by (Y, p, f, b), where $p: Y \to X$ is holomorphic and unramified, $f \in Hol(Y)$, $b \in p^{-1}(a)$, and $p_*(f_b) = \varphi$.

Definition 1.2. An analytic continuation is **maximal** if the following property holds: if (Z, q, g, c) is another continuation of φ , then there exists a holomorphic map $F : Z \to Y$ which is fiber preserving $(p \circ F = q)$ such that F(c) = b and $F^*f = g$.

Theorem 1.1. Let X be a Riemann surface, $\varphi \in O_{X,a}$. Then there exists a maximal analytic continuation (Y, p, f, b) of φ .

Remark 1.1. One can show that this is unique up to holomorphic diffeomorphism, but we will not do that here.

Lemma 1.1. Let (Y, p, f, b) be an analytic continuation of φ . Let $\gamma : [0, 1] \to Y$ be a path in Y from b to $y \in Y$. Then the germ $\psi = p_*(f_y) \in O_{X,p(y)}$ is an analytic continuation of φ along the path $p \circ \gamma$.

Proof. Set $\varphi_t = p_*(f_{\gamma(t)}) \in O_{x,p(\gamma(t))}$ for all $0 \leq t \leq 1$. Then $\varphi_0 = \varphi$, and $\varphi_q = \psi$. We need to check that $[0,1] \to O_X$ sending $t \mapsto \varphi_t$ is continuous. Let $t_0 \in [0,1]$. Then there exist neighborhoods $V \subseteq Y$ of $\gamma(t_0)$ and $U \subseteq X$ of $p(\gamma(t_0))$ such that $p|_V : V|toU$ is a holomorphic bijection. Let $g = f \circ ((p|_V)^{-1}) \in Hol(U)$. Then $p_*(f_z) = g_{p(z)}$ for all $z \in V$. We can find a neighborhood I_{t_0} of t_0 such that $\gamma(I_{t_0}) \subseteq V$. Then for every $t \in I_{t_0}$, $\varphi_t = g_{p(\gamma(t))}$. Thus, ψ is an analytic continuation of φ along $p \circ \gamma$.

Now let's prove the theorem.

Proof. Let Y be the connected component in O_X containing φ . Then $Y \subseteq O_X$ is open (since O_X is locally connected), and the map $p = p|_Y$ is a local homeomorphism $Y \to X$. There exists a unique complex structure on Y such that $p: Y \to X$ is holomorphic. Let $\zeta \in Y$. Then ζ is a germ of a holomorphic function on X at $p(\zeta)$. Define $f(\zeta) = \zeta(p(\zeta))$. Then $f \in \operatorname{Hol}(Y)$, and if $b = \varphi$, then $b \in p^{-1}(a)$ and $p_*(f_b) = \varphi$.

Let us check the maximality of (Y, p, f, b). Let (Z, q, g, c) be an analytic continuation of φ . Let $z \in Z$ and z = q(z). The germ $q_*(g_z) \in O_{X,x}$ arises by analytic continuation of φ along a curve from a to x in X. Thus, there exists a unique $\psi \in Y$ such that $q_*(g_z) = \psi$. We get a map $F : Z \to Y$ sending $z \mapsto \psi$, and it follows that (Y, p, f, b) is maximal. \Box

1.2 Analytic functionals and the Fourier-Laplace transform

Definition 1.3. We say that a linear map $\mu : \operatorname{Hol}(\mathbb{C}) \to \mathbb{C}$ is an **analytic functional** if it is continuous in the following sense: there exist a compact $K \subseteq \mathbb{C}$ and constant C > 0such that $|\mu(f)| \leq C \sup_K |f|$ for all $f \in \operatorname{Hol}(\mathbb{C})$.

Remark 1.2. By the Hahn-Banach theorem, μ can be extended to a linear continuous functional on C(K). Then there exists a measure ν on K such that $\mu(f) = \int_K f(z) \nu(z)$ for $f \in \text{Hol}(\mathbb{C})$.

Example 1.1. Let $\gamma : [0,1] \to \mathbb{C}$ be a C^1 path, and define the functional $\mu(f) = \int_{\gamma} f(z) dz = \int_0^1 f(\gamma(t)) \gamma'(t) dt$. μ does not change if γ if replaced by a homotopic path. So the representing measure need not be unique.

Example 1.2. Let $\mu(f) = f^{(j)}(0)$ for $j \ge 0$ is an analytic functional.

Definition 1.4. A compact set $K \subseteq \mathbb{C}$ is called a **carrier** for the analytic functional μ if for every open neighborhood ω of K, there is a constant C_{ω} such that $|\mu(f)| \leq C_{\omega} \sup_{\omega} |f|$ for $f \in \operatorname{Hol}(\mathbb{C})$.

Remark 1.3. The first example shows that carriers need not be unique, either.

Definition 1.5. The Fourier-Lapclace transform $\hat{\mu}$ of μ is defined by

$$\widehat{\mu}(\zeta) = \mu_z(e^{z\zeta}), \qquad \zeta \in \mathbb{C}.$$

We have that $\hat{\mu}$ is entire (by its description as integration of this function against a measure).

Proposition 1.1. The map $\mu \mapsto \hat{\mu}$ is injective.

Proof. If $\hat{\mu}(\zeta) = 0$ for all ζ , then $0 = \partial_{\zeta}^{j} \hat{\mu}|_{\zeta=0} = \mu(z^{j})$ for all j. In particular, for any polynomial $p, \mu(p) = 0$. Polynomials are dense in $\operatorname{Hol}(\mathbb{C})$, so $\mu(f) = 0$ for all $f \in \operatorname{Hol}(\mathbb{C})$. That is, $\mu(f) = 0$.